hans

hans

【OCR】源码编译安装tesseracr-ocr并简单说一下接口——Ubuntu14.04


一、源码编译安装:#

安装前建议你备份一下 /usr/include/ 目录下 opencv 和 opencv2 两个目录。

反正我每次安装完 tesseract 后,我的 opencv 头文件不是没了就是出问题。

github 地址: https://github.com/tesseract-ocr/tesseract/releases

建议下载安装 4.0 版本,有 LSTM,准确率和速度都不错。

其次建议下载安装 3.05 版本,也是此时的最新版本,没有 LSTM。

安装介绍地址: [ https://github.com/tesseract-
ocr/tesseract/blob/master/INSTALL.GIT.md ](https://github.com/tesseract-
ocr/tesseract/blob/master/INSTALL.GIT.md)

懒得打开上面安装链接的看下面就好。

  1. 先安装各种依赖

    sudo apt-get install g++ # or clang++ (presumably)
    sudo apt-get install autoconf automake libtool
    sudo apt-get install autoconf-archive
    sudo apt-get install pkg-config
    sudo apt-get install libpng12-dev
    sudo apt-get install libjpeg8-dev
    sudo apt-get install libtiff5-dev
    sudo apt-get install zlib1g-dev

如果你要安装训练工具的话,还要安装下面三个依赖

sudo apt-get install libicu-dev
sudo apt-get install libpango1.0-dev
sudo apt-get install libcairo2-dev

2. 然后安装 Leptonica

这个软件有很多版本,先给你下载地址,然后给你版本对照表。

官网地址: http://www.leptonica.org/

1668714209762.jpg

必须源码编译安装,默认安装目录在 /usr/local/ 下

  1. 安装 tesseract

    ./autogen.sh
    ./configure
    make
    sudo make install
    sudo ldconfig
    make training
    sudo make training-install

二、部分 API 介绍#

预训练模型地址: https://github.com/tesseract-ocr/tessdata

预训练模型可以放到任意位置,也可以放到默认位置:/usr/local/share/tessdata/

这个方法基本原理我当时也没深研究。

我理解大概就是先把图片转化为灰度图。

然后以当前点为中心,判断周围一圈的点是否不为白色。

如果这个点不是白色,那么继续以这个点为中心点向外扩张。

通过上面简单原理,我们可以知道。

输入图片越小运行速度越快

输入图片越干净输出越准确

字符不能有过大旋转角度(作者肯定不会 360 度旋转训练模型,他也确实没这么做)

下面是 API 例子:

#include <tesseract/baseapi.h>
#include <leptonica/allheaders.h>
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>


int main()
{
    char *outText;

    tesseract::TessBaseAPI *api = new tesseract::TessBaseAPI();

    //设置识别引擎,如果要用cube引擎,需要去上面下载cube对应的预训练模型。
    tesseract::OcrEngineMode enginemode = static_cast
  
   (0);
	/*
	"OCR Engine modes:"
	"  0    Original Tesseract only."
	"  1    Cube only."
	"  2    Tesseract + cube."
	"  3    Default, based on what is available."
           4   Neural nets (LSTM) only.(版本4.0才有)
	*/

    // 初始化,NULL可以替换成你存放预训练模型的路径。下面"eng"可以是"eng++chi_sim"形式。
    if (api->Init(NULL, "eng", enginemode)) 
    {
        fprintf(stderr, "Could not initialize tesseract.\n");
        exit(1);
    }
    //下面两句话都是设置只识别数字,第一种方法是打开识别开关,第二种方法是只识别白名单内字符。当然还有黑名单。具体看下面我给的API地址。
    //api->SetVariable("classify_bln_numeric_mode", "1");
    //api->SetVariable("tessedit_char_whitelist", "0123456789");

    //设置识别页面类型
    tesseract::PageSegMode pagesegmode = static_cast
   
    (7);
    api->SetPageSegMode(pagesegmode);
    /*
    "Page segmentation modes:"
    "  0    Orientation and script detection (OSD) only."
    "  1    Automatic page segmentation with OSD."
    "  2    Automatic page segmentation, but no OSD, or OCR."
    "  3    Fully automatic page segmentation, but no OSD. (Default)"
    "  4    Assume a single column of text of variable sizes."
    "  5    Assume a single uniform block of vertically aligned text."
    "  6    Assume a single uniform block of text."
    "  7    Treat the image as a single text line."
    "  8    Treat the image as a single word."
    "  9    Treat the image as a single word in a circle."
    " 10    Treat the image as a single character."
    " 11    Sparse text. Find as much text as possible in no particular order."
    " 12    Sparse text with OSD."
    " 13    Raw line. Treat the image as a single text line,"
    */


    // Open input image with leptonica library
    Pix *image = pixRead("/usr/src/tesseract/testing/phototest.tif");
    api->SetImage(image);

    //下面是通过opencv读取图片
    //cv::Mat gray_img, thres_img;
    //cv::Mat img = cv::imread("");
    //cv::cvtColor(img, gray_img, cv::COLOR_BGR2GRAY);
    //cv::threshold(gray_img, thres_img, 127., 255., cv::THRESH_BINARY);
    //api->SetImage((uchar*)thres_img.data, thres_img.cols, thres_img.rows, 1, thres_img.cols);


    // Get OCR result
    outText = api->GetUTF8Text();
    printf("OCR output:\n%s", outText);

    // Destroy used object and release memory
    api->End();
    delete [] outText;
    pixDestroy(&image);

    return 0;
}
   
  

API 头文件地址: https://github.com/tesseract-ocr/tesseract/blob/master/api/baseapi.h

先这样吧,这个工具功能蛮强大的。还需要时间慢慢研究。

顺便提一嘴我做卡片识别的思路。

关键技术是 opencv 的 findContours () 配合 finetune 后的 mnist,数字识别效果拔群。

以上部分内容参考自: https://github.com/tesseract-ocr/tesseract

Loading...
Ownership of this post data is guaranteed by blockchain and smart contracts to the creator alone.